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Empirical Estimation Errors

Abstract

The success of applications of Item Response Theory (IRT)

depends upon the properties of the estimates of model parameters.

Many theoretical properities of these estimates have been

extensively studied. However, the properties of estimates

obtained empirically from real data depend not only on the

theoretical results, but also on the data and the estimation

procedures used to obtain them. In this paper, the properites of

estimates obtained from a commonly-used implementation of the

joint maximum likelihood approach (LOGIST) are examined

extensively

of the test

made of the

and shown to be, in part, functi)ns of the properties

or item set being calibrated. A small study is also

properties of estimates obtained from a commonly-used

implementation of the marginal maximum likelihood approach

(BILOG). Recommendations are made for the improvement of both

procedures.

Key words: IRT empirical estimation errors
IRT empirical bias
test properties and IRT estimation
LOGIST
BILOG
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Empirical Estimation Errors As a Function of Test Properties

Introduction

The theoretical advantages of Item Response nry (IRT)

psychometric models over classical test theory are by now well

known and appreciated in the educational and psychological

measurement communities. When model assumptions are satisfied,

true item parameters do not change even when the items are subsets

of larger item sets or when parameters are estimated from

examinees with different true abilities sampled from the same

population. Likewise, true abilities do not change, even when

estimated from different sets of items (Lord, 1980). This

'invariance' property of true item and person parameters provides

the foundation for many important applications of IRT.

Some of the more novel applications include new test designs

such as computerized adaptive testing (see Lord, 1980, Chapter 10;

Weiss, 1975; Holland et al., 1988; Stocking, 1987), mastery test

design (Lord, 1980, Chapter 11; Lewis & Sheehan, 1988), new test

development paradigms (Birnbaum, 1968; Lord, 1980; van der Linden

& Boekkooi-Timminga, 1987), and new equating and pre-equating

methodologies (see Lord, 1980, Chapter 13; Cook, Petersen, &

Stocking, 1983; Eignor & Stocking, 1986; Stocking & Eignor, 1986).

The extent to which these and other applications of IRT are
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successful in practice depends not on the properties of the true

item and person parameters, but rather on the properties of

estimates of the item and person parameters.

The purpose of the present paper is to explore, through a

series of Monte Carlo simulation studies, the degree to which and

some circumstances under which estimates of item and person

parameters fail to achieve the invariance properties of true item

and person paramezers, and some practical consequences. The heart

of the discussion concentrates on a situation commonly encountered

in practice: the estimation of parameters of sets of items (for

convenience these item sets will be referred to as tests) and the

simultaneous or subsequent use of these estimates to obtain

estimates of examinee ability. The context is the 3-parameter

logistic (Birnbaum) item response model.

The major focus of this paper is the joint maximum likelihood

estimation procedures for obtaining parameter estimates as

incorporated in the widely used computer program, LOGIST

(Wingersky, Barton, & Lord, 1982). A small investigation is made

of the more recently developed marginal maximum likelihood

approach incorporated in the computer program BILOG (Mislevy &

Bock, 1983). These two programs incorporate very different

approaches to the problem of obtaining estimates of item and
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person parameters (Mislevy & Stockitg, 1987), but suffer some of

the same deficiencies..

The Three-Parameter Logistic Item Response Model

Central to item response theory is a mathematical expression

for the probability that an examinee with ability 0 (theta) will

correctly respond to a particular test itei. Under the three-

parameter logistic (3PL) model for test items that are scored

either right or wrong (Birnbaum, 1968), this probability, denoted

by P(0) has the following form:

= c +
+ e

-1.7a(0-b)
(1 - c) (1)

where a, b, and c are parameters characterizing the item and e is

the mathematical constant. The three item parameters have

specific interpretations. The c parameter is the probability that

an examinee completely lacking in ability will answer the item'

correctly, and is frequently called the guessing parameter. The b

parameter determines the location of the curve along the ability

scale. This parameter characterizes the difficulty of an item, in

that if a and c are held constant, higher values of b imply lower

probabilities of correct response from all examinees. The

logistic curve has its point of inflection at 8 - b. The a

BEST COPY AVAIIABLE



Empirical Estimation Errors

6

parameter is proportional to the slope of the curve at this

inflection point. This a parameter characterizes the

discrimination of the item, in that probabilities of correct

response to items with high a values are more sensitive to changes

in ability in the neighborhood of the item difficulty.

An Important Distinction

For statisticians, the theoretical properties of statistical

estimators are of primary importance. For practitioners, who deal

with the results of implementations of statistical procedures,

these theoretical properties are less important than the empirical

estimation errors and biases actually obtained in practice. It is

the latter that are the focus of this paper.

Joint maximum likelihood (JML) and marginal maximum

likelihood (MML) are statistical procedures for obtaining

parameter estimates. As such, they have certain theoretical

properties that have been studied extensively. Lord (1983a)

derives the theoretical bias and standard errors of maximum

likelihood ability estimates derived from known item parameters.

Lord (1983b) derives the theoretical bias and standard errors of

maximum likelihood item parameter estimates derived from known

abilities. Lord and Wingersky (1985) develop standard errors of

item and ability parameter estimates when all parameters are

9
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estimated jointly by maximum likelihood. Lord (1986) considers

the theoretical bias and standard errors of maximum likelihood,

marginal maximum likelihood, and Bayesian estimation procedures.

Davey and Levine (1988) compare the theoretical standard errors

for item parameter estimates assuming known abilities with those

obtained when abilities are estimated simultaneously.

The empirical properties of either JML or MML estimators

differ from the theoretical properties for many reasons. In the

present instance, LOGIST does not typically produce JML estimates

of item and person parameters; BILOG does not typically produce

MML estimates of item parameyers and Bayesian estimates of

abilities (Mislevy & Stocking, 1987). Rather, the procedures

produce approximations that are considered to be 'good enough'.

Even if LOGIST is required to produce JML estimates and BILOG

required to produce MML estimates, both LOGIST and BILOG results

depend not only upon the information contained in the response

data, but also upon information supplied by the researcher as may

be required to produce reasone,le and efficient solutions (e.g.,

starting values, boundaries, prior distributions, etc.). Thus the

empirical properties of estimates produced by either program can

be expected to differ across tests and across samples of

examinees. The simulation studies described in subsequent

0
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sections indicate that some of the empirical properties of the two

estimation procedures are less than optimal and, possibly,

correctable.

The Correlations Among Errors of Estimation for Item Parameters

Wingersky and Lord (1984) study the theoretical estimation

errors for item and person parameters when estimated by JML. They

note that:

1) The correlation between errors made when estimating item

discrimination and item difficulty "is moderately or strongly

positive for easy items and moderately or strongly negative for

difficult items."

2) The correlation between errors made when estimating item

difficulty and the guessing parameter, as item discrimination

decreases, "becomes strongly positive except for difficult items

where the guessing parameter is well determined."

3) The correlation between errors made when estimating item

discrimination and the guessing parameter "for difficult items ...

is positive and sometimes high; for easy items the correlation is

negative."

These theoretical correlations between estimation errors are

not a specific or unique consequence of the JML estimation

procedure, nor any other estimation procedure. Rather, they are a

11
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consequence of the fact that the mathematical model postulated for

the item response function has a constrained shape (in the case of

the 3PL, this shape is symmetric), and that estimation procedures

have available data from only a limited region to estimate

parameters that describe this shape over the entire range of

ability. To the extent that the limited item response data fits

the postulated model, a particular missestimation of one item

parameter causes an automatic and predictable adjustment in the

estimates of the other parameters in order to fit the available

data as well as possible.

To illustrate this point, Figure 1 shows the genesis of the

correlation between errors of sample estimates of item

discrimination and item difficulty. In each subfigure, the solid

curve is the true item response function that the data are assumed

to follow. For the purpose of this illustration, we assume that

the distribution of ability from which examinees are drawn is

bell-shaped; most of the observed data fall in the middle region

of each panel. The top row shows an item that is too hard for

most examinees (a - 1.0, b - 2.0, c - .2); the bottom row shows an

item that is too easy for most examinees (a - 1, b - -2, c - .2).

Suppose, for a hard item, an item discrimination is

A

underestimated (top left panel, a - .5). If the difficulty of the
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A

item is then estimated to be equal to the true difficulty (b

2.0), the resulting item response function (shown with long

dashes) does not lie very close to the true item response function

in the middle regions where most of the data lie. If the

difficulty of the item is estimated to be less than the true
A

difficulty (b = 1.0), the resulting item response function (shown

with short dashes) lies even further away from the true item

response function in this middle region. Only by estimating the

difficulty of the item to be larger than the true difficulty (b =

3.0) can a close fit to the true item response function be

obtained in the middle regions. An analagous argument holds when,

for a hard item, the item discrimination is overestimated (top
A

right panel, a - 1.5). The estimated difficulty will then be
A

underestimated (b = 1.5) in order to fit the preponderance of the

data. These two panels illustrate the Wingersky and Lord negative

correlation between errors of sample estimates of item

discrimination and item difficulty for hard items.

A similar logic leads to the positive correlation for an easy

item in the two panels of the bottom row. When the item
A

discrimination is underestimated (a = .5), underestimating the
A

item difficulty (b - -3.0) moves the estimated curve closest to

the true curve. When the item discrimination is overestimated



Empirical Estimation Errors

11

A A

(a - 1.5), overestimating the item difficulty (b - 1.5) has the

same effect.

Insert Figure 1 about here

These correlations or errors of estimates may be, and

probably are, important in most applications of IRT. They assume

additional importance if estimated item parameters are used as if

they had the properties of true item parameters in contexts

different from the original calibration of sudh items. This is so

because these correlations among errors of estimation induce

biases in the estimated item parameters which may propagate in

unknown ways in these new contexts.

The General Simulation Design

Although the details of some of the simulations differ, and

will be described in subsequent sections, most follow a general

pattern summarized here. In all but one of the simulations

reported, samples of simulated examinees (simulees) remain

constant, while the properties of the collection of items to be

calibrated vary. Typically the sample of simulees is drawn from a

rectangular distribution of true ability. Such samples should be

better than those drawn from typical (bell-shaped) distributions
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of true ability; Wingersky and Lord (1984) show that such samples

produce smaller errors in both item and ability parameter

estimation when the JML procedure is used. A set of true item

parameters is then used to define a test, and response data are

generated for each simulee using the true ability, true item

parameters, and the 3PL model of equation (1). A response is

assigned to an item/simulee encounter by comparing the modeled

probability with a random draw from a uniform distribution on the

unit inverval. If the modeled probability is greater than the

random number, a correct response is assigned; otherwise an

incorrect response is assigned.

Item parameter estimates are obtained (the test is

calibrated) using the JML procedure and LOGIST in all but one

case, in which the MML procedure and BILOG are used for

comparison. Since the calibration results are reported on a

metric specific to a particular calibration, the results are

transformed to the metric of the true parameters using the

Stocking and Lord (1983) transformation method. This method finds

as parameters of the linear transformation between two different

metrics those values that minimize the difference between the two

test characteristic curves.
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Transformed item parameter estimates are then compared with

their true values by plotting the residual (estimated value minus

true value) against the true value. If there is no estimation

error or bias in the item parameter estimates, these residuals lie

on a horizontal line at zero. If the estimates contain error, but

no bias, these residuals form a cloud of points that is evenly

bisected by the horizontal line at zero. If the estimates also

contain bias, the point cloud may take on different shapes.

Ability estimates from a typical LOGIST calibration are not

computed from the final item parameter estimates. Using the

default procedures of the LOGIST program the final program step

improves the item parameter estimates while fixing the ability

estimates. To obtain ability estimates based strictly upon the

final item parameter estimates, a criterion or cross-validation

sample of simulees is independently drawn from the original true

distribution of simulee ability, and ability estimates for this

criterion sample are obtained assuming that the transformed item

parameter estimates are in fact the true parameters. These

estimated abilities are compared with their true values by first

computing the median of the estimated abilities for small

intervals of true abilities. Lower and upper limits of a

nonparametric two-tailed 5% confidence band around the median are

16
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also computed using the method of David (1981). The residual of

this median (median estimated ability minus true ability) and also

of the confidence band are then plotted against the true ability.

If the estimated abilities contain no estimation error or bias,

the residuals and confidence bands lie on the horizontal line at

zero. If the estimated abilities contain estimation error, but no

bias, the residuals of the medians fluctuate slightly around the

horizontal line at zero, and the confidence bands include zero.

If the estimated abilities are biased, there are portions of the

range of true ability in which the residuals of the medians differ

from zero and for which the confidence intervals do not contain

zero.

Four Extreme Tests

We want to show that the relationship between true and

estimated parameters is determined by the peculiarities of the

test. To illustrate this point the four tests for this simulation

were chosen to yield strikingly different relationships. Each

test consisted of 100 5-choice items. The true c's for each item

in each test were set equal to .15. This value was chosen based

on the observation that in practice c's are usually estimated as

smaller than the probability of a correct answer based on random

guessing. The true b's for each test were chosen randomly from a
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rectangular distribution with a range of -2.5 to +2.5. The true

a's were always chosen to be within the range of .5 to 2.5, but

with different correlations with the true b's for each test.

These correlations varied as follows:

1) For test Cl, the population correlation between true a

and true b was +.8, and the sample correlation was +.76 .

2) For test C2, the population correlation was

-.8, and the sample correlation was -.76.

3) For test C3, items with difficulty less than zero

(moderate to easy items) had a Population correlation with item

discrimination of -.8. Items with difficulty greater than zero

(moderate to difficult items) had a population correlation with

item discrimination of +.8. The overall sample correlation

attained was .08.

4) For test C4, moderate to easy items had a population

correlation with discrimination of +.8, and moderate to difficult

items had a population correlation with discrimination of -.8,

with an overall sample correlation of .00.

General Results

Table 1 summarizes the true item parameters of these tests.

Of the four tests, test Cl is the most realistic. For real tests,

there is typically a positive correlation between item
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discrimination and item difficulty (see for example, Lord

(1975a)), although certainly not as strong as this. However, the

situations represented by C2, C3, and C4 may not be so unusual if

the items to be calibrated come from many different tests or

subtests calibrated simultaneously.

Insert Table 1 about here

A calibration sample of N - 3000 simulees was chosen from a

rectangular distribution of true ability from -2.5 to +2.5. The

population mean and standard deviation are 0.0 and 1.44; while the

sample mean and standard deviation were -.01 and 1.46. A separate

criterion or cross-validation sample of another N .- 3000 simulees

was chosen from the same distribution, with sample mean and

standard deviation of -.03 and 1.45. Item response data for each

test were generated for each simulee in each sample. For the

calibration sample, these data are used to obtain item parameter

and ability estimates from LOGIST. For the cross-validation

sample, these data are used to obtain only ability estimates.

Lord (1983a) derives the theoretical bias and standard error

of maximum likelihood ability estimates, assuming that the item

parameters are known (true) values. The theoretical bias,
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although small, suggests that high true abilities are slightly

overestimated, and low true abilities are slightly underestimated.

Figure 2 shows the residual median plots, described earlier, for

the cross-validation sample when the ability estimates have been

computed from the generated response data and the true item

parameter for each test. The theoretical bias predicted by Lord

appears insignificant in these plots.

Insert Figure 2 about here

Each test was calibrated, using the generated response data

for the calibration sample, and transformed to the metric of the

true parameters. The final transformed item parameter estimates,

along with the generated data for the cross-validation sample were

then used to computed new estimated abilities. Figure 3 shows the

residual median plots for these estimated abilities. It is clear

that abilities estimated from estimated item parameters (Figure 3)

are very different from abilities estimated from true item

parameters (Figure 2).

Insert Figure 3 about here

20
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It is well to remember when examining these Figures that the

calibration sample of simulees was the same for all four tests,

and the cross-validation sample of simulees is also the same for

all four tests. The precision of the estimates, as judged by the

width of the confidence bands, appears about the same using either

true or estimated item parameters to estimate ability, and across

all four tests. While there is no apparent bias in the ability

estimates when obtained from true item parameters, the bias is

significant when ability estimates are obtained from estimated

item parameters. And, in spite of the fact that the calibration

and cross-validation samples are the same for each setting, the

bias differs by test.

Figures 4, 5, 6, and 7 show the residuals for the estimated

item parameters for each of the four tests. Each Figure has three

panels -- the top panel shows the residuals for the estimated a's,

the middle panel shows the residuals for the estimated b's, and

the bottom panel shows the.residuals for the estimated c's. For

the residuals for the item difficulties, items with overestimated

discriminations are plotted with a plus for a plotting symbol;

items with underestimated discriminations are plotted with a

hexagon.

21
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Insert Figures 4, 5, 6, and 7 about here

In each of the four Figures, the overall patterns of bias for

the b's mirrors, as it must, that of the bias in the estimated

abilities for the criterion sample shown in Figure 3. In

addition, each of the figures shows the negative correlation

between sample estimates of a and b for hard items, and the

positive correlation for easy items.

For test Cl, with a positive correlation of .8 between the

true a and true b, high b's are overestimated and have

underestimated a's; low b's are overestimated and have

overestimated a's. Very high a's are underestimated, and low a's

tend to be overestimated. For test C2, with a negative

correlation of -.8 between true a and true b, high b's are

underestimated with overestimated a's; low b's are underestimated

with underestimated a's. The estimated a's are more widely

scattered than for test Cl, but also show high a's as

underestimated and low a's as overestimated. Test C3 has a

negative correlation between true a and b for moderate to easy

items and a positive correlation for moderate to difficult items.

Difficult items are overestimated with underestimated a's; easy
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items are underestimated with underestimated a's. More a's are

underestimated, and almost all moderate to high a's are

underestimated; most of the lower a's are overestimated. For test

C4, with a positive correlation between true a's and b's for

moderate to easy items and a negative correlation for moderate to

difficult items, difficult items have underestimated b's and

overestimated a's; easy items have overestimated b's and

overestimated a's. Most of the a's are overestimated.

Test C2 and LOGIST

The dependence of the bias in item parameter estimates and

ability estimates upon the properties of the test is demonstrated

in Figures 2 through 7. If typical samples with bell-shaped

distributions of ability had been used, one might conclude that

this dependence occurs from lack of available data with which to

estimate precisely the more extreme (high and low) difficulties or

abilities. But this is not the case here since the calibration

sample is rectangular. Except for possibly the most extreme

difficulties and abilities, approximately the same amount of

information is available in the response data for estimating the

parameters of all items.

An hypothesis was developed and explored to explain the

dependence of the bias on test properties based on the
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characteristics of the calibration procedure used, LOGIST. As a

default, LOGIST imposes a particular structure on the alternating

stages of ability and item parameter estimation. A partial

rationale for this structure is given in Mislevy and Stocking

(1987). This structure consists of series of four steps within

which restrictions are imposed upon what parameters are actually

being estimated. In Step 1, a's and c's are held fixed at their

s.arting values, and only abilities and difficulties are

estimated. In Step 2, abilities are fixed at current values, and

only the item parameters are estimated. Step 3 is like Step 1,

and Step 4 is like Step 2. The effect'of this structure is to

prevent the procedure from being run to complete convergence,

while providing reasonable estimates for item parameters and

abilities in a feasible amount of time.

Consider test C2 with a correlation of -.8 between true a and

true b. In Step 1, abilities and difficulties are estimated,

while discriminations and guessing parameters are held fixed at

their starting values. The starting values for the c's are

typically all equal to a default value set by the program to be

slightly lower than the probability of a correct response by

chance. The starting values for the discriminations are typically

all equal to a common middle value specified by the researcher and
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based on previous experience with similar data. To mirror this

situation, in the LOGIST runs for tests Cl through C4, the initial

a parameter was set to the mean of the true a parameters for a

run.

For test C2, th'.s starting value of a will be lower than the

true a's for easy items, and higher than the true a's for the hard

items. This can, and probably does, induce the correlation in

Step 1 between the errors of estimated difficulties (different for

each item) and this common a value. If the bias is present in the

estimated difficulties, it will also bE resent for the estimated

abilities since biased difficulties and equally biased abilities

yield the same modeled probabilities for the observable responses

that LOGIST is attempting to fit. In Step 2, these estimated

abilities are fixed (at their biased values) and a, b, and c are

estimated. Because the biased abilities are fixed, the biased

estimated b's cannot change much, causing the individual a's and

c's estimated in Step 2 to accommodate to the bias. Step 3 now

fixes the estimated a's and c's and reestimates the abilities and

difficulties. However, the a's and c's are already biased so the

abilities and difficulties remain so. Step 4, fixing the biased

estimated abilities and estimating the item parameters for the

last time cannot undo the bias.



Empirical Estimation Errors

23

The implication of this scenario is that the bias is

introduced by the initial common value for the item discrimination

with which the LOGIST procedure begins. To test this hypothesis,

the calibration of test C2 was repeated with better starting

values for the item discriminations. Instead of a common value,

the 'starting value for each item discrimination was set to the

value of the true discrimination. It bears emphasis to note that

the true disci'iminations were used only as starting values; they

were not fixed throughout the LOGIST run.

The residuals for the item parameter estimates are shown in

Figure 8. When compared to the previous results for this test

shown in Figure 5, the correlation between errors of estimates for

a and b are barely visible and only present for the most extreme

difficulties. The discriminations are slightly overestimated

throughout. The effects on estimated abilities for the

calibration sample (not the cross-validation sample) are shown in

the top panel of Figure 9. Results for the calibration sample can

be expected to be more extreme than those for the cross-validation

sample since they are not computed from the final item parameter

estimates.
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Insert Figures 8 and 9 about here

While it is clear that better starting values for the item

discriminations removes a large part of the bias seen in Figure 5

and Figure 3, it is somewhat startling to find that changing

starting values for item discriminations has such a large effect

on the standard LOGIST procedure. Although the default four-step

procedure was known to prevent complete convergence, it was not

known to be especially sensitive to starting values. These

results give rise to the speculation that if LOGIST were run to

complete convergence the biases seen in the more typical LOGIST

run with poor starting values for item discriminations might also

disappear.

To test this hypothesis, the calibration of test C2 was

repeated twice more. In each of these runs, the four-step

procedure was bypassed and LOGIST was allowed to run to complete

convergence. In the first of these two runs, the initial a

parameters were set at the common value, as before, and in the

second run the initial a parameters were set at their true values.

The results, in terms of the estimated abilities for the

calibration sample, are shown in the middle and bottom panels of
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Figure 9. Both of thes'e runs produce less satisfactory results

than the four-step procedure with true a's as starting values (top

panel of Figure 9). Running LOGIST to complete convergence allows

too much movement away from the good starting values.

It is reassuring to note that when running LOGIST to complete

convergence, the starting values of the item discriminations have

no impact on the final results (compare the middle and bottom

panels). It is not reassuring to note that, although

substantially reduced, the same bias as noted originally in Figure

3 for the residual medians is still present when LOGIST is run to

complete convergence.

The item parameter estimates from these two complete

convergence runs agree to at least two decimal places for the a's,

b's, and c's. Figure 10 shows the residuals of the item parameter

estimates. The estimates of item discrimination are clearly

improved when compared to Figure 5. There is less scatter,

although there is more overestimation. The estimates of item

difficulties are also clearly improved, although the correlation

of errors of estimates that induces the bias in the estimated

difficulties is still present. One of the reasons for the

introduction of the four-step procedure as the standard for LOGIST

BEST COPY AVAILABLE
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runs was to prevent the overinteraction between item and-person

parameter estimates that can cause some estimated a's to increase

without limit (Wingersky, private communication, 1988). It seems

plausible that the results obtained here are due to the kind of

overinteraction that the four-step procedure was designed to

prevent.

Insert Figure 10 about here

Test Cl and BILOG

BILOG approaches the problem of obtaining estimated item and

person parameters in two phases. First, item parameter estimates

are obtained using MML procedures, assuming a distribution of

ability and allowing the imposition of formal prior distributions

on the item parameter estimates. Second, after the item

parameters have been obtained, ability estimates may be obtained

by a number of different estimation procedures, assuming the item

parameter estimates are the true values. Given the behavior of

LOGIST's implementation of the JML procedures with these extreme

tests, it is of interest to investigate the properties of BILOG

for at least one of these extreme tests.
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The first BILOG run to obtain item parameter estimates used

the response data for the calibration sample for test Cl, which

has a positive correlation of .8 between true a and b. The

distribution of abilities was specified as rectangular, and fixed

for the run. The starting values for all difficulties were set to

0.0 and the starting values for all discriminations were set to

1.0; default prior distributions on the item parameters were used.

This run failed to converge, in fact, it diverged to unreasonable

values for some of the item parameter estimates. During the

estimation cycles, some item discriminations became strongly

negative, for example, equal to -2.

Mislevy (personal communication, 1988) suggested that the

process could be improved by specifying that initial values for

item discriminations and difficulties be computed hueristically

from the conventional proportions correct and r-biserials for each

item. This method of obtaining initial values is the BILOG

default option, done automatically unless specifically bypassed,

as in the first BILOG run. A second BILOG run was done following

this suggestion, still retaining the default prior distributions

on the item parameter estimates and the fixed rectangular

distribution of ability. This run came to a successful

conclusion. It is disturbing to find that BILOG also is
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apparently sensitive to the starting values used for the

parameters.

In the second phase of BILOG, maximum likelihood estimates of

ability were computed for the calibration sample assuming that the

item parameter estimates are the true values. The calibration

sample serves the same function here for BILOG that the cross-

validation sample did for LOGIST.in that the estimated abilities

for the calibration sample played no direct role in the estimation

of item parameters and are estimated from only the final item

parameter estimates.

The residuals of the item parameter estimates are shown in

Figure 11, and the residual median ability estimates in Figure 12.

These may be compared to the typical LOGIST results for test Cl

shown in Figure 4 (for item parameter estimates) and Figure 3 (for

ability estimates). BILOG estimated discriminations have less

scatter than typical LOGIST estimated discriminations of Figure 4.

The estimated difficulties are clearly less biased than those of

LOGIST in Figure 4. However, the correlations between errors of

estimates of a and b still cause some bias in estimated

difficulties, which cause the estimated abilities to exhibit bias

also. The degree of this bias appears to be approximately the
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same as when LOGIST was run to complete convergence on test C2

(Figures 9 and 10).

Three More Realistic Tests

29

The four tests of the previous section were designed to be

extreme in order to illustrate certain phenomena. It is

reasonable now to consider whether these same phenomena occur when

the set of items to be calibrated is more similar to tests that

are actually constructed and administered in practice. To

investigate this issue, the results of an actual LOGIST

calibration of 130 5-choice SAT Verbal items were used as a basis

for constructing three new tests, summarized in Table 2, as

follows:

1) Test T1 was designed to be a typical test; the true item

parameters were defined to be the same as those obtained from the

calibration of the SAT Verbal form. The overall correlation

between the true item discriminations and true difficulties was

.27. For the 32 items with true difficulties less than -1, the

correlation between true a and b was .50; for the 51 items with

true difficulties between minus and plus 1.0, the correlation

between true a and b was .11; and for the 47 items with true

difficulties greater than 1., the correlation between true a and

true b was -.15.

3 r)
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2) Test T2 was designed to be unusually discriminating. The

true item difficulties and guessing parameters were the same as

for the typical test Tl. The true item discriminations were

obtained by multiplying each discrimination parameter in the

typical test by 2.

3) Test T3 was designed to be a poorly discriminating test.

The true difficulties and guessing parameters were the same as the

typical test Tl. The true item discriminations were obtained by

dividing each discrimination parameter in the typical test by 2.

Insert Table 2 about here

The calibration sample and the cross-validation sample from

the previous simulations were used in these simulations also. As

before, item response data were generated for each of these new

tests for each simulee in each sample. The residual median plots

for the cross-validation sample when ability estimates are

computed from the generated response data and the true item

parameters for each test are shown in Figure 13. The residual

medians have roughly the same shape, although there is more

variation in these residuals for the poorly discriminating test

T3, than for the other two tests. The width of the confidence

33
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bands is narrower for the discriminating test T2 than for the

typical test Tl, and it is broader for the poorly discriminating

test T3 than for the typical test Tl. This is as expected, since

the standard error when estimating ability from true item

parameters is a function of item discriminations (Lord, 1983a).

As before, when compared to the analagous plots for the extreme

tests, shown in Figure 2, the predicted statistical bias is

insignificant.

Insert Figure 13 about here

Each test was calibrated using the standard LOGIST procedure,

and the results transformed to the metric of the true item

parameters. The transformed item parameter estimates, along with

the generated data for the cross-validation sample were then used

to compute estimated abilities. The results, in terms of the

residual median plots, are shown in Figure 14 for each test. It

is again well to remember that the calibration sample of simulees

was the same for these three tests as well as the four extreme

test studied earlier, as was the cross-validation sample.
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Insert Figure 14 about here

The residual medians for all three tests show biases similar

to, but smaller than, those of extreme test Cl, which had a

correlation of +.8 between true discrimination and true

difficulty. Here the correlation between true discrimination and

difficulty is .27. The residual medians are most biased for the

most discriminating test, T2, and least biased for the least

discriminating test T3. The typical test lies inbetween these

two. The width of the confidence bands is a function of the

estimated item discriminations and is widest for the poorly

discriminating test T3, and narrowest for the highly

discriminating test T2. It is sufficiently wide for test T3 that

one cannot conclude that these residual medians are significantly

biased at most levels of true ability. Apparently, if a test is

of sufficiently low discrimination, there is enough error in the

ability estimates for the cross-validation sample so that bias in

the ability estimates cannot be easily detected.
.

Figures 15, 16, and 17 show the residuals for the estimated

item parameters for the three tests. The residual plots for the

item difficulties are on a different scale than those for the
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extreme tests discussed in the previous section in order to

accommodate the wider range found in the more typical tests here.

Note also that the scale on which the item discrimination

residuals are p:otted differs from that of the extreme tests, and

also across the three tests of the present section. For the

typical and discriminating tests, the overall patterns of bias for

the item difficulties is similar to that of the estimated

abilities, although the pattern is somewhat clearer for the more

discriminating test. For these two tests, the correlations

between errors of estimates of a and b for hard and easy items are

visible. For the poorly discriminating test T3, Figure 17, the

scatter in estimated difficulties is much wider than we have seen.

This Figure shows that when item discriminations are very low, if

they are underestimated, item difficulty is also, regardless of

the true difficulty. Conversely, when low discriminations are

overestimated, item difficulties are also, regardless of the value

of the true difficulty.

Insert Figures 15, 16, and 17 about here

The scatter shown for the residuals for item discriminations

differs for the three tests. The a parameters for the poorly
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discriminating test T3 are the most precisely estimated; the a

parameters for the typical test T1 are estimated with moderate

precision, and the a parameters for the most discriminating test

T2 are estimated with the least presicion. This is in accord with

the Wingersky and Lord (1984) result that, when item and ability

parameters are jointly estimated, the standard error of a

increases with a. It is clear that the guessing parameter is not

very well estimated for items with low discrimination. The

majority of items have guessing parameters estimated to be the

common value by LOGIST for the poorly discriminating test T3.

This does not happen for either the typical test or the

discriminating test.

Tests Tl and T2 and LOGIST

The typical test Tl and the more discriminating test T2 show

the same type of biases as the more extreme test G1 studied

earlier. They present an opportunity to confirm again the

hypothesis concerning the sensitivity of the results of the

typical LOGIST calibration to the starting value of the

discrimination parameters. To test the hypothesis in this

context, the calibrations of these two tests were repeated, using

the true item discriminations as the starting values for the

estimated discriminations.

37
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The results of these calibrations in terms of the residual

medians for the calibration (not cross-validation) sample are

shown in Figure 18. As expected, the residual medians show very

little, if any, of the bias seen in Figure 14. Likewise the

residuals for the item parameter estimates shown in Figures 19 and

20 show the correlations between errors of estimates of difficulty

and discrimination to be much reduced, although still visible for

the most extreme items.

Insert Figures 18, 19, and 20 about here

An Unusual Set of Items in a Realistic Setting

The Department of Defense has engaged in a number of

coordinated efforts over the past decade aimed at exploring the

feasibility of replacing the Armed Services Vocational Aptitude

Battery (ASVAB) with a computerized adaptive battery. The ASVAB

is administered to all candidates for military service for the

purposes of both selection and placement. As part of the

exploration of adaptive testing, Prestwood, Vale, Massey and Welsh

(1985) developed and calibrated over 2000 experimental items to be

considered as candidates for an ASVAB adaptive testing item pool.

In a recent effort to develop methods of on-line calibration,
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funded by a number of agencies of the Department of Defense, the

author, along with three other researchers, made an extensive

exploration of the subset of these items developed for the Word

Knowledge (WK) subtest (Stocking, 1988a; Holland, Bock, Davis,

Levine, Samejima, & Stocking, 1988). The focus of the study

described here is the simulation of the initial calibration of

these experimental WK items as candidates for an adaptive testing

item pool.

The current WK subtest consists of a single item type,

synonyms, and is designed to measure the understanding of words

typically used in social studies and everyday life, human

relationships, science and nature, and arts and humanities

(Prestwood, et al., 1985). Prestwood et al. wrote and calibrated

258 similar items that spanned a wider range of difficulty, as

required by adaptive testing, than those found in operational use.

For the purpose of obtaining item parameter estimates they

acquired a sample of N = 8171 candidates for military service from

Military Entrance Processing Stations who had also taken the

conventional ASVAB test battery. This set of data, that is, the

responses of 8171 individuals to the 'experimental' Word Knowledge

items as well as the conventional ASVAB, forms the basis of the

current simulation.

39
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The set of items is unusual in that, while each of the

current operational forms is presumably designed to measure the

typical or average examinee most efficiently, the experimental

items are designed to span a much broader range. Two aspects of

the obtained set of examinees deserve mention. First, it is

unlikely that motivation was the same on the experimental items as

on the operational items, since examinees volunteered responses to

the experimental items while being required to respond to the

operational forms for military service entrance. Second, the true

distribution of ability for this sample is undoubtedly bell-

shaped, perhaps providing less than optimal information for

estimating parameters of items that span a wide range of

difficulty.

For the purpose of collecting response data, the 258 items

were divided into three roughly parallel 'tests' of 86 items each.

Each candidate took one of these experimental tests, in addition

to one of six different 35-item WK subtests in current operational

use. These operational subtests serve as links in the calibration

design in the sense that individuals taking the same operational

subtest were assigned to be administered any one of the three

experimental tests. The resulting sparse data matrix consists of

responses to 468 items: 3 experimental tests of 86 items each
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plus 6 operational subtests of 35 items each. Each experimental

test was taken by at least 2500 examinees, and each subtest of an

operational form was taken by at least 1100 examinees.

Item parameter estimates were obtained by Prestwood et al.

for all items in a single calibration using the ASCAL (Vale &

Cialluca, 1988) procedure. For the present simulation, these

parameter estimates are considered to be the true item parameters.

Maximum likelihood estimates of examinee ability were computed,

using the true item parameters, and these ability estimates are

considered to be true abilities for the simulees in the current

study. Summary statistics for these true item and person

parameters are given in Table 3. The correlation between true

discrimination and true difficulty for the 468 items is .48. For

the 218 items with true difficulty less than -1., the correlation

between discrimination and difficulty is .43; for the 202 items

with true difficulty between -1. and +1., the correlation is .11,

and for the 48 items with true difficulty greater than +1., the

correlation is -.27. This pattern of correlation coefficients is

similar to the .50, .11, -.15 pattern seen for the easy, moderate,

and harder items in the three tests of the previous study.

Insert Table 3 about here

-
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Simulated response data were produced, in the same sparse

matrix design as the real data, using the true item parameters,

the true simulee abilities, and the 3PL item response function

model. Maximum likelihood simulee ability estimates were then

obtained from the generated data, using the true item parameters.

The resulting residual median plot is shown in the "top panel of

Figure 21. Note that horizontal axes in all panels of Figure 21

have a wider scale than all other such plots in this paper, to

accomodate the wider range of ability found in this sample of

simulees. The confidence bands are wider at the extremes than in

other plots of this nature because of the smaller number of cases

in the tails of the ability distribution. All simulees with true

ability less than -3 or greater than +3 are grouped into the

lowest and highest points plotted. This avoids the extreme

fluctuations that might otherwise occur because of very small

numbers of cases in the most extreme tails. As before, the

statistical bias of these ability estimates appears negligible.

Insert Figure 21 about here

The entire set of 468 items was calibrated in a typical

LOGIST run, and the results transformed to the metric of the true

item parameters. The results, in terms of the residual median
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plot for the abilities of the calibration sample, are shown in the

middle panel of Figure 21. Figure 22 shows the residuals for the

estimated item parameters, on scales different from other such

residual plots in this paper to accomodate these data. As with

the other items sets that had positive correlations between true a

and true b, namely Cl, Tl, T2, and T3, extreme abilities are

overestimated. Extreme difficulties are also overeatimated, and

the correlation between estimation errors for item discrimination

and difficulty is strong, particularly for easy items. This is

due, in part, to the fact that the particular sample of simulees

contained few individuals with extreme abilities and therefore

little information for estimating the parameters of extreme items.

The mean true item discrimination for this item set is 1.26, which

is fairly high. As with the artificial discriminating test T2 of

the previous study, the estimates of item discrimination show a

fair amount of scatter and are, on average, overestimates.

Insert Figure 22 about here

To confirm some of the results obtained previously, this

calibration was repeated, reading in the true discriminations

parameters as starting values. The residual median plot for the

abilities of the calibration sample is shown in the bottom panel
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of Figure 21, and the residuals for the item parameter estimates

are shown in Figure 23. The bias for the estimated abilities is

much reduced. The bias for the item difficulties is also reduced,

but the correlation between errors of estimation for item

discriminations and difficulties is still visible. Item

discriminations are more overestimated here than when a common

middle value is used as the starting value for all item

discriminations.

Insert Figure 23 about here

Conclusions and Recommendations

The motivation underlying this research was to explore and

understand some apparently anomalous results in various LOGIST-

based applications of IRT that have been obtained from time to

time over the past several years (see, for example, Lord, 1975b;

Stocking, Cook, & Eignor, 1988; Stocking 1988a). At the time,

some of these anomalous results were attributed, at least in part,

to the fact that, in reality, the 3PL item response function never

fits real data exactly (Eignor & Stocking, 1986). But other

anomalous results were obtained in simulation studies, such as

this one, where data are generated to fit the 3PL model. The

applications themselves are unimportant for the present
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discussion, but had one element in common, that is, they all

depended heavily upon the use, in contexts perhaps unrelated to

the actual calibration of items, of item parameter estimates as if

they were true parameters. While this unavoidably introduces

errors in the subsequent uses of the items, it was also found to

introduce large (and sometimes unacceptable) biases.

On the basis of the research presented here, it seems clear

that theoretical (statistical) bias can be neglected; it also

seems clear that empirical bias cannot be neglected. The typical

LOGIST implementation of the JML procedure gives rise to some of

the anomalous results previously obtained. The structure of the

four-step procedure.imposed on the alternating stages of ability

and item parameter estimation can sometimes prevent sufficient

movement away from starting values, consequently preventing the

production of 'good' final estimates. And the nature of the

biases in the final estimates obtained is a function of the true

properties of the item sets calibrated, as seen in Figures 3

through 7.

This can be clearly seen when true values of item

discrimination are used as starting values compared with the

typical middle value for all item discriminations, as in Figures 8

and 9; 18, 19 and 20; and 21, 22 and 23. The four-step procedure

does not move very far away from the starting values, therefore
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using true discriminations as starting values produces much better

results.

The best a JML-based estimation procedure can hope to do is

exemplified by running LOGIST to complete convergence, as in

Figures 9 and 10. Although extra monetary costs are incurred in

this setting, starting values for the parameters are irrelevant.

The best an MML-based estimation procedure can hope to do is

exemplified by running BILOG to convergence with good starting

values, as in Figures 11 and 12. Poor starting values can lead to

divergence of the procedure. However, and this bears emphasis,

even in these most optimum settings, such as rectangular

calibration samples and completely appropriate items, the

naturally occurring correlations among errors of estimation for

the item parameters, one of which is shown in Figure 1, do not

disappear; they remain, although their deleterious consequences

are reduced.

Stocking (1988b) shows why such correlations are inevitable.

Examinees with ability equal to item difficulty are optimum for

estimating only the item difficulty, and provide little

information for estimating either item discrimination or the

guessing parameter. Only examinees whose true ability lies above

and below the item difficulty provide information for estimating

item discrimination; and only examinees whose true ability lies
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far below the item difficulty provide information for estimating

the guessing parameter. It seems likely that there will always

be, in any item set/calibration sample combination, some extreme

items for which the calibration sample cannot provide adequate

data. And it is these items for which estimated parameters will

be in most error and will exhibit most strongly the correlations

among.the errors. Whether these correlations remain important in

the subsequent use of item parameter estimates, assuming they were

true, is an issue that must be evaluated carefully in the context

of the particular application.

It seems likely that the future holds some promise of

improved estimation methods that may mitigate some of the problems

described in this paper. Methods that do not rely solely on point

estimtes of parameters, but rather work from their posterior

distributions, may potentially provide better results. These

methods (e.g., Tsutakawa and Soltys, 1988), formally incorporate

sources of uncertainty--including the error correlations that play

a central role in the present paper--contained in the estimates

through Bayesian methods.

LOGIST, as a computer program of wide and long-standing use

in many different applications of IRT, needs improvement. Most

applications cannot afford to run the program to complete

convergence. It may be possible to improve results of the

BEST COPY AVAILABLE
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four-step structure by obtaining better starting values for the

parameters. Alternatively, controlling the behavior of estimates

of discrimination and guessing parameters through the imposition

of prior distributions on them may be cost effective and provide

reasonable results.

BILOG, being a more recent computer program available for

general use, has not been subjected to the same wide variety of

applications as LOGIST. As such, it does not contain the

necessary restrictions to prevent the numerical procedures from

diverging from reasonable, although perhaps less than optimal

starting values. It seems clear that such additional restrictions

are necessary.
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Statistics summarizing

C2, C3, and C4.

Test Cl, r = +.8

Table

the true item parameters

All true c's are equal

min max

51

1

of the four extreme tests, Cl,

to .15; all tests have 100 itema

Percentiles

10 25 50 75 90mean S.D.

a 1.45 .39 .51 2.30 .91 1.18 1.47 1.72 1.93

b -.06 1.39 -2.49 2.39 -1.98 -1.26 -.28 1.14 1.87

Test G2, r = -.8 Percentiles

mean S.D. min max 10 25 50 75 90

a 1.54 .40 .52 2.46 .98 1.31 1.52 1.83 2.10

b -.15 1.41 -2.49 2.46 -1.92 -1.40 -.28 .90 1.92

Test C3, r = -.8: +.8 Percentiles

mean S.D. min max 10 25 50 75 90

a 1.51 .42 .61 2.37 .92 1.19 1.55 1.81 2.03

b 0.00 1.55 -2.47 2.46 -2.25 -1.22 .01 1.54 2.03

Test C4, r = +.8; -.8 Percentiles

mean S.D. min max 10 25 50 75 90

a 1.47 .40 .61 2.46 .95 1.18 1.49 1.78 1.93

b -.10 1.48 -2.45 2.46 -2.07 -1.48 .02 1.07 2.03
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Table 2

Statistics summarizing the true item parameters of the three more realistic

tests, Tl, T2, and T3. All tests have 130 items.

mean S.D. min max 10 25

Percentiles

50 75 90

T1,a .85 .30 .22 1.67 .43 .63 .87 1.04 1.17

T2,a 1.69 .59 .44 3.35 -.87 1.26 1.74 2.08 2.34

T3,a .42 .15 .11 .84 .21 .32 .43 .52 .58

b .17 1.43 -3.66 2.59 -1.82 -1.00 .60 1.37 1.80

.17 .08 .00 .50 .10 .12 .15 .22 .27
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Table 3

Statistics summarizing the true item parameters and abilities used in the

siwulated calibration of ASVAB data.

mean

ASVAB

S.D. min max 10 25

Percentiles

50 75 90

a 468 1.26 .42 .39 2.43 .75 .95 1.22 1.54 1.82

b 468 -.86 1.46 -3.10 3.01 -2.95 -2.11 -.85 .18 1.02

c 468 .23 .08 .01 .47 .13 .18 .22 .29 .35

0 8171 -.04 1.06 -7.18 5.05 -1.29 -.67 -.05 .61 1.29
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Figure 1: Illustration of the correlation between estimation errors for
a and b. The top row shows a hard item; the bottom row shows an easy item.
The left column shows the consequences of underestimating the item
discrimination; the right column shows the consequences of overestimating the
item discrimination.
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Figure 3: For cross-validation sample abilities estimated from estimated
item parameters, the residual median estimated ability (solid curve) and the
5% two-tailed confidence interval (dashed curves) for the four extreme tests.
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estimated item parameters, the residual median estimated ability (solid curve)
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Figure 16: The residuals (estimated minus true) of the estimated item

parameters for discriminating test T2.
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Figure 17: The residuals (estimated minus true) of the estimated item

parameters for poorly discriminating test T3.
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Figure 19: The residuals (estimated minus true) of the estimated item
parameters for typical test T1 when true a's are used as starting values for
the item discrimination estimates.
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Figure 20: The residuals (estimated minus true) of the estimated item

parameters for discriminating test T2 when true a's are used as starting

values for the item discrimination estimates.
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Figure 21: For ASVAB calibration sample abilities, the residual median
estimated ability and the confidence interval when abilities are estimated
from true item parameters (top), when abilities are estimated from estimated
item parameters (middle), and when abilities are estimated from estimated item
parameters in a calibration where true a's are used as starting values
(bottom).
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Figure 22: The residuals (estimated minus true) of the estimated item

parameters for the ASVAB calibration.
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Figure 23: The residuals (estimated minus true) of the estimated item
parameters for the ASVAB calibration when true a's are used as starting values

for the item discrimination estimates.
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